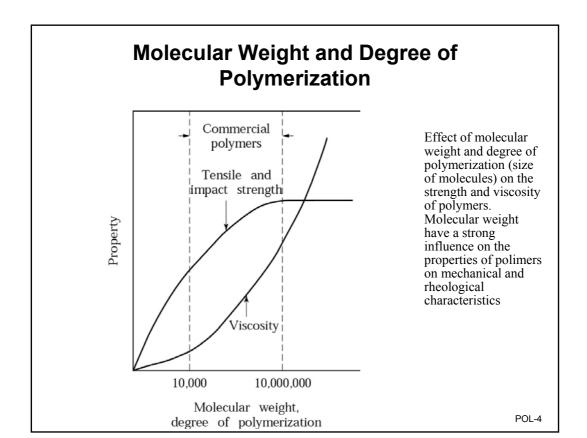
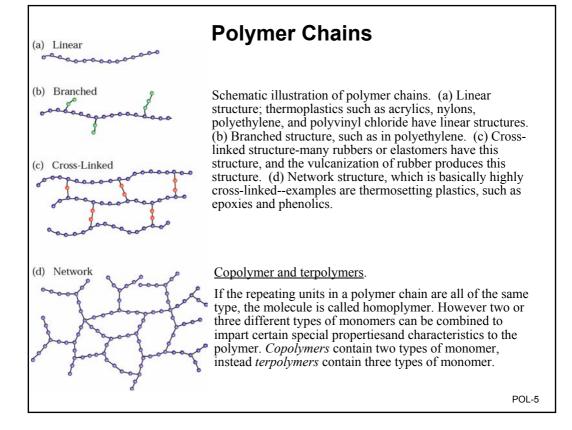
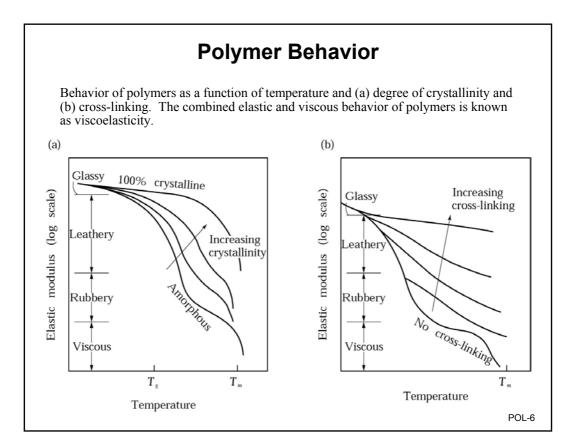
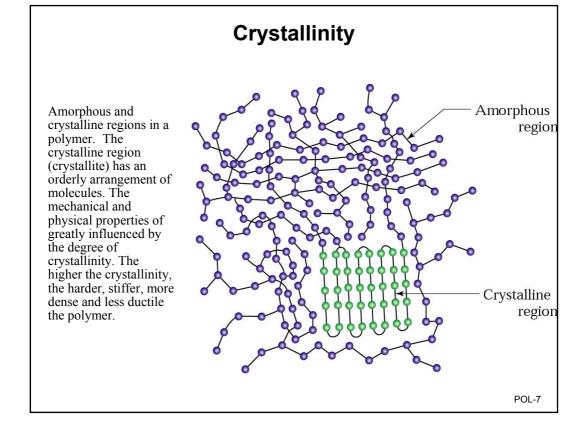


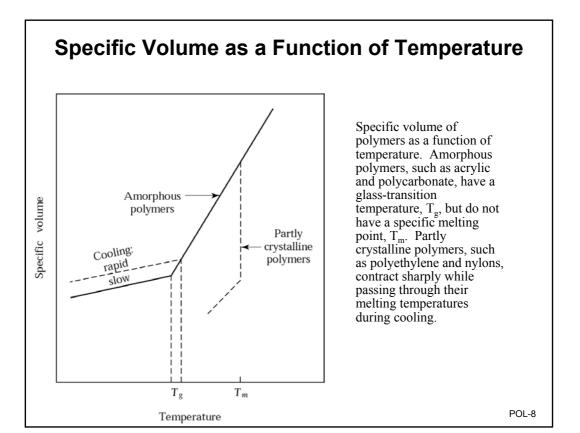
Range of Mechanical Properties for Various Engineering Plastics

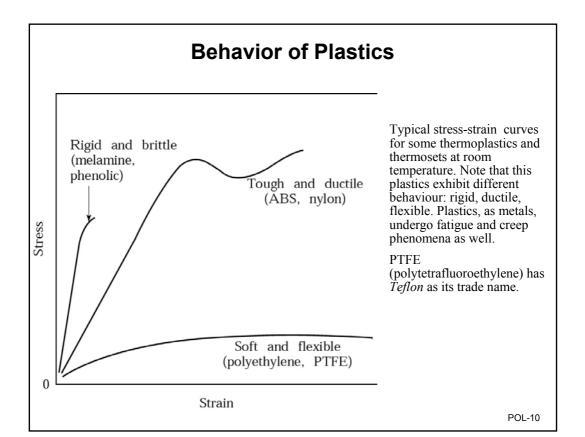

Material	UTS (MD-)		Elongation	Poisson's
	UTS (MPa)	<i>E</i> (GPa)	(%)	ratio (v)
ABS	28-55	1.4-2.8	75–5	
ABS, reinforced	100	7.5	—	0.35
Acetal	55-70	1.4-3.5	75–25	_
Acetal, reinforced	135	10	_	0.35-0.40
Acrylic	40-75	1.4-3.5	50-5	
Cellulosic	10-48	0.4-1.4	100-5	
Epoxy	35-140	3.5-17	10-1	_
Epoxy, reinforced	70-1400	21-52	4-2	_
Fluorocarbon	7-48	0.7-2	300-100	0.46-0.48
Nylon	55-83	1.4-2.8	200-60	0.32-0.40
Nylon, reinforced	70-210	2-10	10-1	_
Phenolic	28-70	2.8-21	2-0	_
Polycarbonate	55-70	2.5-3	125-10	0.38
Polycarbonate, reinforced	110	6	6–4	_
Polyester	55	2	300-5	0.38
Polyester, reinforced	110-160	8.3-12	3-1	_
Polyethylene	7-40	0.1-1.4	1000-15	0.46
Polypropylene	20-35	0.7 - 1.2	500-10	_
Polypropylene, reinforced	40-100	3.5-6	4-2	_
Polystyrene	14-83	1.4-4	60-1	0.35
Polyvinyl chloride	7–55	0.014-4	450-40	

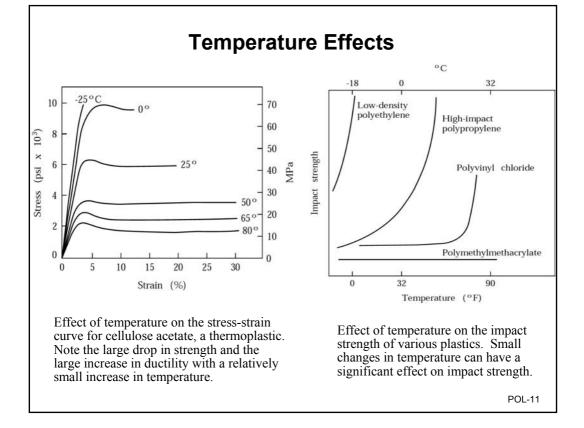

Structure of Polymer Molecules

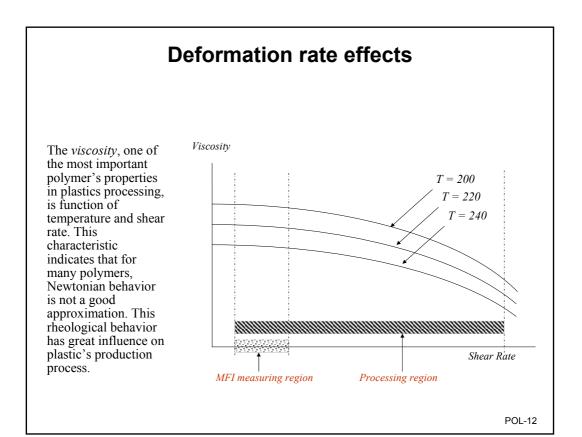

Polymers are long-chain molecules, that are formed by polymerization, that is, by linking and crosslinking different monomers. Many of a polymer's properties depend largely on (a) the structure of individual polymer molecules, (b) the shape and size of the molecules, and (c) how the molecules are arranged to form a polymer structure.



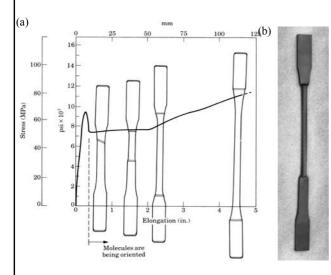






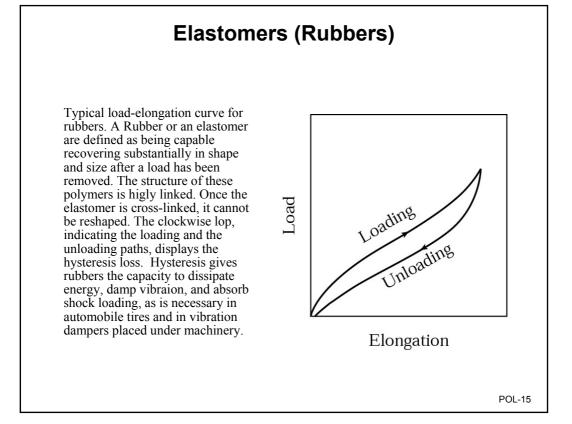

Glass-Transition and Melting Temperatures of Some Polymers

Material	T_g (°C)	T_m (°C)
Nylon 6,6	57	265
Polycarbonate	150	265
Polyester	73	265
Polyethylene		
High density	-90	137
Low density	-110	115
Polymethylmethacrylate	105	
Polypropylene	-14	176
Polystyrene	100	239
Polytetrafluoroethylene	-90	327
Polyvinyl chloride	87	212
Rubber	-73	


POL-9

Elongation and polymer properties

(a) Load-elongation curve, that shows visco-elastic plastic *behavior*, for polycarbonate, a thermoplastic. (b) High-density polyethylene tensile-test specimen, showing uniform elongation (the long, narrow region in the specimen).

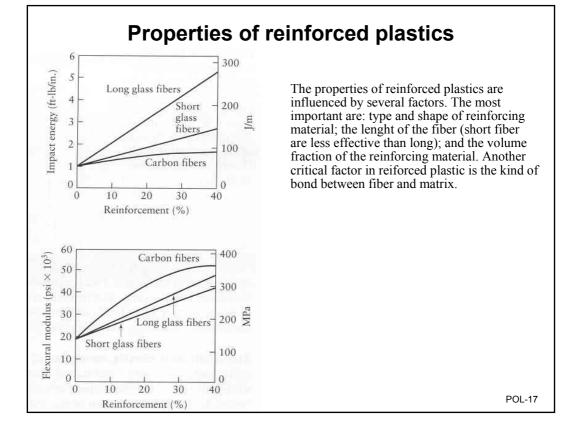

Creep and stress relaxation: these terms indicates the permanent elongation of a component under a static load maintained for a period of time. Beacause of their viscoelastic behaviour, thermoplastics are particularly susceptible to these phenomena.

Orientation: when termoplastics are permanently deformed the long chain align in the direction of elongation. This process is called elongation and, because of this, the polymer becomes anisotropic.

Water absorption: an important limitation of some polymer is their ability of absorb water (hygroscopy). Water, acting as a plasticizing, makes polymer more plastic. POL-13

General Recommendations for Plastic Products

Design requirement	Applications	Plastics
Mechanical strength	Gears, cams, rollers, valves, fan blades, impellers, pistons	Acetal, nylon, phenolic, polycarbonate
Functional and decorative	Handles, knobs, camera and battery cases, trim moldings, pipe fittings	ABS, acrylic, cellulosic, phenolic, polyethylene, polypropylene, polystyrene, polyvinyl chloride
Housings and hollow shapes	Power tools, pumps, housings, sport helmets, telephone cases	ABS, cellulosic, phenolic, polycarbonate, polyethylene, polypropylene, polystyrene
Functional and transparent	Lenses, goggles, safety glazing, signs, food-processing equipment, laboratory hardware	Acrylic, polycarbonate, polystyrene, polysulfone
Wear resistance	Gears, wear strips and liners, bearings, bushings, roller-skate wheels	Acetal, nylon, phenolic, polyimide, polyurethane, ultrahigh molecular weight polyethylene



Reinforced plastics

Among the major developments in materials are *reinforced plastics*. These materials can be defined as a combination of two or more chenically distinct and insoluble phaseswhose properties are superior to those of the the costituent acting separately. Plastics posses low mechanical properties. These properties can be improved by embedding reinforcements of varios type Reinforced plastics consists in fibers (the discontinuos or dispersed phase) in a polymer matrix. Fibers are classified as short or long fibers also calle d discontinuos fibers. The short and long-fiber designation are in general based on following observation: in a given fiber, if the mechanical properties improve as a result of increasing the fiber length, then the fibers is denoted as a short fiber. On contrary the fibers are denoted long fiber.

Types and General Characteristics of Reinforced Plastics and Metal-Matrix and Ceramic-Matrix Composites

Material	Characteristics
FIBER	
Glass	High strength, low stiffness, high density; E (calcium alumi- noborosilicate) and S (magnesia-aluminosilicate) types are commonly used; lowest cost.
Graphite	Available typically as high modulus or high strength; less dense than glass; low cost.
Boron	High strength and stiffness; has tungsten filament at its center (coaxial); highest density; highest cost.
Aramids (Kevlar)	Highest strength-to-weight ratio of all fibers; high cost.
Other	Nylon, silicon carbide, silicon nitride, aluminum oxide, boron carbide, boron nitride, tantalum carbide, steel, tungsten, and molybdenum; see Chapters 3, 8, 9, and 10.
MATRIX	
Thermosets	Epoxy and polyester, with the former most commonly used; others are phenolics, fluorocarbons, polyethersulfone, silicon, and polyimides.
Thermoplastics	Polyetheretherketone; tougher than thermosets, but lower resistance to temperature.
Metals	Aluminum, aluminum–lithium alloy, magnesium, and titanium; fibers used are graphite, aluminum oxide, silicon carbide, and boron.
Ceramics	Silicon carbide, silicon nitride, aluminum oxide, and mullite; fibers used are various ceramics.

